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M. Kunick, R. A. Berry, H.-J. Kretzschmar, and U. Gampe 

Application of the new IAPWS Guideline on the fast and 
accurate calculation of steam and water properties with the 
Spline-Based Table Look-Up Method (SBTL) in RELAP-7 
The numerical simulation of thermalhydraulic processes in nuclear power plants requires very 
accurate and extremely fast algorithms for calculating the thermophysical properties of water 
and steam. In order to provide such algorithms, the International Association for the 
Properties of Water and Steam (IAPWS) has adopted the new “IAPWS Guideline on the Fast 
Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method 
(SBTL)” [1]. In this article, the SBTL method is applied to property functions of specific 
volume and specific internal energy (v,e) based on the scientific formulation IAPWS-95 and 
the latest IAPWS formulations for transport properties. From the newly generated SBTL 
functions, thermodynamic and transport properties as well as their derivatives and inverse 
functions are calculable in the fluid range of state for pressures up to 100 MPa and for 
temperatures up to 1273 K, including the metastable liquid and the metastable vapor regions. 
The SBTL functions reproduce the underlying formulations with an accuracy of 10-100 ppm 
and significantly reduced computing times. The SBTL method has been implemented into the 
nuclear reactor system safety analysis code RELAP-7 [2] to consider the real fluid behavior of 
water and steam in a novel 7-equation two-phase flow model. 

Anwendung der neuen IAPWS-Richtlinie zur schnellen und 
genauen Berechnung der Eigenschaften von Wasser und 
Wasserdampf mit dem Spline-Basierten Table Look-up 
Verfahren (SBTL) in RELAP-7 
Die numerische Simulation thermohydraulischer Prozesse in Kernkraftwerksanlagen erfordert 
sehr genaue und extrem schnelle Stoffwert-Berechnungsalgorithmen für Wasser und 
Wasserdampf. Zu diesem Zweck hat die International Association for the Properties of Water 
and Steam (IAPWS) die neue “IAPWS Guideline on the Fast Calculation of Steam and Water 
Properties with the Spline-Based Table Look-Up Method (SBTL)” [1] verabschiedet. In 
diesem Beitrag wird das SBTL Verfahren auf Stoffwertfunktionen von spezifischem Volumen 
und spezifischer innerer Energie (v,e) basierend auf der wissenschaftlichen Formulierung 
IAPWS-95 und den neuesten IAPWS Standards für Transporteigenschaften angewendet. Mit 
den neuen SBTL Funktionen lassen sich die thermodynamischen Zustandsgrößen und 
Transporteigenschaften sowie deren Ableitungen und Umkehrfunktionen im fluiden 
Zustandsgebiet bei Drücken bis zu 100 MPa und Temperaturen bis zu 1273 K, inklusive der 
metastabilen Gebiete für überhitzte Flüssigkeit und unterkühltes Gas, berechnen. Die SBTL 
Funktionen geben die zugrundeliegenden Formulierungen mit einer Genauigkeit von 10-
100 ppm und erheblich reduzierten Rechenzeiten wieder. Das SBTL Verfahren wurde in den 
zur Sicherheitsanalyse von Kernreaktorsystemen entwickelten Code RELAP-7 [2] 
implementiert um das reale Zustandsverhalten von Wasser und Wasserdampf in einem neuen 
7-Gleichungsmodell für die Zweiphasenströmung zu berücksichtigen.  



1 Introduction 
 
The analysis of thermalhydraulic processes in nuclear power plants with numerical 
simulations is of particular importance for safety assessment and the development of 
advanced technologies. For these simulations, system codes and Computational Fluid 
Dynamics (CFD) are widely in use. In particular, the detailed analysis of transient processes is 
computationally intensive and requires long computing times. A large portion of the 
computing time is demanded for the calculation of fluid properties. In the thermalhydraulic 
system code RELAP-7 [2] as well as in density based CFD solvers, fluid properties are most 
frequently calculated from specific volume and specific internal energy (v,e). Furthermore, 
numerically consistent inverse functions of pressure and temperature (p,T), pressure and 
specific volume (p,v), pressure and specific enthalpy (p,h), pressure and specific entropy (p,s), 
and specific enthalpy and specific entropy (h,s) are required. The calculation of these property 
functions from accurate fundamental equations of state, such as the IAPWS Formulation 1995 
for General and Scientific Use (IAPWS-95) [3, 4] for water and steam, requires iterative 
algorithms leading to inacceptable computing times. For faster property calculations, the 
IAPWS Industrial Formulation 1997 (IAPWS-IF97) [5, 6] and its supplementary releases on 
backward equations [7, 8, 9, 10] enable computations from (p,T), (p,h), (p,s), and (h,s) 
without iterative procedures. Due to the imperfect numerical consistency with the basic 
equations of IAPWS-IF97, the application of backward equations for simulating processes 
with small spatial and time discretization can lead to convergence problems. In these 
situations, inverse functions must be calculated by iteration from the basic equations with 
starting values determined from the available backward equations. Backward equations do not 
exist for functions of (v,e) and (p,v) or for fluids other than water and steam. Therefore, 
property calculations are often simplified, for instance with cubic equations of state or with 
the ideal-gas model. This leads, depending on the range of state, to inaccurate simulation 
results. To calculate fluid properties more accurately but with reasonable computing times, 
so-called table look-up methods are frequently applied. For these methods, the desired fluid 
properties are interpolated from previously tabulated values, which are calculated from an 
accurate property formulation. The Spline-Based Table Look-up method (SBTL) has been 
developed in a project of the International Association for the Properties of Water and Steam 
(IAPWS) and was adopted as a Guideline [1, 11, 12] in 2015. This method has been applied 
successfully in the CFD code TRACE of the German Aerospace Agency (DLR) [13] and 
other codes for process simulations. In this work, the SBTL method is applied to IAPWS-95 
to consider the real fluid behavior of water and steam in RELAP-7 [2]. From the newly 
generated SBTL functions, thermodynamic and transport properties as well as their 
derivatives are calculable. The range of validity covers the stable fluid phases for pressures up 
to 100 MPa and temperatures up to 1273 K as well as metastable states in the superheated 
liquid phase and the subcooled vapor phase. The latter is of particular importance to enable 
the 7-equation two-phase flow model in RELAP-7 [2] and to consider the delayed 
condensation in the simulation of low-pressure steam turbines in CFD. Furthermore, 
numerically consistent inverse functions for various input variable combinations are provided. 
 
  



2 List of symbols 
 

Symbol Quantity 

a Spline polynomial coefficient 
cp Specific isobaric heat capacity 
cv Specific isochoric heat capacity 
f Function 
floor() Round down 
F Vector of functions 
g Specific Gibbs free energy 
h Specific enthalpy 
i Interval index; Cell index in v direction 
I Number of nodes along p  for s( )T p  or along v  for ( , )p v e  
j Cell index in e direction 
J Number of nodes along e 
J Jacobian matrix 
k Serial number; Exponent 
l Serial number; Exponent 
p Pressure 
p  Transformed pressure 
s Specific entropy 
T Temperature 
e Specific internal energy 
v Specific volume 
v  Transformed specific volume 
w Speed of sound 
x Vapor fraction 
X Vector of unknowns 
η Dynamic viscosity 
λ Thermal conductivity 

 
Superscript 

AUX Auxiliary spline function 
G Spline function for the gas region 
INV Inverse spline function 
K Knot 
L Spline function for the liquid region 
T Transposed 
‘ Saturated-liquid state 
“ Saturated-vapor state 

 
Subscript 

i Cell index in v  direction 
j Cell index in e direction 
liq_spin At the liquid spinodal 
s At saturation 

 
  



3 The Spline-Based Table Look-up method (SBTL) and its application to IAPWS-95 
 
For fast and accurate property calculations in numerical process simulations, table look-up 
methods are frequently applied. For these methods, discrete values of the required properties 
are calculated from accurate property formulations and are stored as nodes in look-up tables. 
During the process simulation, properties are determined from the tabulated values with 
simple interpolation or approximation algorithms. With local algorithms, such as bi-linear or 
local bi-cubic interpolation, properties within a cell of the look-up table are calculated from 
adjacent values only, as opposed to global methods, where all tabulated values are used. 
Although local algorithms are easily implemented, they do have their deficiencies. Bi-linear 
interpolation requires comparatively large look-up tables to represent the fluid properties with 
acceptable accuracy and does not provide continuous first derivatives. Local bi-cubic 
interpolation overcomes these problems, but the calculation of inverse functions is 
computationally intensive, as it requires the evaluation of trigonometric functions. Moreover, 
to achieve the desired accuracy over the entire range of state, the look-up tables are frequently 
prepared with variable distances between the nodes. This requires extensive cell search 
algorithms during the property calculation and decreases the computing speed. 
In order to provide fast and accurate property calculation algorithms for computationally 
intensive process simulations, the Spline-Based Table Look-up Method (SBTL) [1, 11, 12] 
was developed in a project of the International Association for the Properties of Water and 
Steam (IAPWS). Spline functions are continuous, piecewise defined functions. For pure fluids 
or mixtures at constant composition, phase boundaries, such as Ts(p), are represented by one-
dimensional spline functions, whereas the properties in the single-phase region, such as p(v,e), 
can be described by two-dimensional spline functions. For mixtures with variable 
composition, the method can be extended using multivariate spline interpolation. 
Alternatively, a mixture model can be used, where each pure component is described 
separately. In most numerical process simulations, property functions need to be continuously 
differentiable once. Global spline interpolation algorithms with second-degree polynomials 
are capable to fulfil this requirement. By means of variable transformations, the function to be 
interpolated is linearized. The spline function is constructed on piecewise equidistant nodes in 
transformed coordinates. This results in simple search algorithms to find the interval or cell in 
the look-up table, which corresponds to the given input variables. In this way, the underlying 
property formulations can be reproduced with high accuracy and low computing time. 
Moreover, second-degree polynomials can easily be solved analytically in terms of the 
independent variables. This enables the fast calculation of numerically consistent inverse 
functions. 
In this work, the SBTL method is applied to property functions for water and steam based on 
IAPWS-95 for the range of validity outlined in Section 3.1. In Sections 3.2 - 3.5, the basic 
principles of the SBTL method are described for one- and two-dimensional spline functions. 
In Sections 3.6 - 3.9, the newly generated SBTL functions are presented. 
  



3.1 Range of validity 
 
The range of validity of the generated SBTL property functions is subdivided into the liquid 
region L, the gas region G, and the stable two-phase region TP. It is bounded as follows: 

 273.15 K ≤ T ≤ 1273.15 K 611.212677 Pa ≤ p ≤ 100 MPa. 

The lower pressure limit is set to ps(273.15 K) = 611.212677 Pa. Figure 1 shows the liquid 
region L, which also includes the metastable superheated liquid phase between the saturated 
liquid curve (x=0) and the liquid spinodal. Analogously, the gas region G includes the 
metastable subcooled vapor phase between the saturated vapor curve (x=1) and the vapor 
spinodal as shown in Figure 2. The boundary between the liquid region L and the gas region 
G is defined by the specific internal energy at the critical point ec = 2015.734524 kJ/kg. 
 

 

Figure 1: Region L in the v-e plane. 

 

Figure 2: Region G in the v-e plane. 

 
3.2 One-dimensional spline functions using the example of Ts(p) 
 
In this example for one-dimensional spline functions, a quadratic spline function for Ts(p) is 
generated. In order to enhance the accuracy of any interpolation or approximation method, it 
is advantageous to linearize the function to be interpolated first by means of suitable variable 
transformations. For many saturation-pressure equations, temperature and pressure are 
transformed as 1T T −=  and ln( )p p= . The computation of the natural logarithm is 
computationally intensive since it is not an algebraic function. For a computationally more 
efficient linearization, the pressure is transformed using 4p p=  and the temperature 
transformation is omitted. In this way, the change in curvature, which cannot be reproduced 
by a quadratic polynomial, is reduced and the resulting spline function is more accurate. The 
effect of this simple variable transformation is shown in Figs. 3 and 4. 
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The spline function is created in transformed coordinates and interpolates values between a 
series of I discrete data points, the so-called nodes (see Fig. 4). The s, ( )i iT p  values at the 
nodes are calculated from the underlying equation of state. The I spline polynomials are 
connected at knots, which are located in the middle between the nodes along p . The K

ip  
values of the I+1 knots are 

 ( )K
1 1

1

2i i ip p p+ += + , 1, ... , 1i I= −  (1.1) 

 ( )K
1 1 2 1

1

2
p p p p= − − , and  ( )K

1 1
1

2I I I Ip p p p+ −= + − . (1.2, 1.3) 

The Ts positions of the knots result from the spline algorithm as explained below. A spline 
polynomial ranges over the interval {i} between two knots 

 K K
1i ip p p+≤ <  (1.4) 

and intersects the node (i) at s, ( )i iT p . The number of I nodes is chosen to ensure the required 
accuracy of the spline function over its full domain of definition. The nodes are distributed 
equidistantly along p  so that a simple search algorithm can be used to determine the 
interval {i} in the series of knots that fulfills Eq. 1.4 for a given transformed variable p . For 
equidistant nodes, and therefore equidistant knots, i can easily be calculated from 

 
K
1

K
floor

p p
i

p

 −=   ∆ 
� . (1.5) 

The distribution of nodes and knots can also be manipulated by piecewise equidistant nodes, 
in ranges for which 1i ip p p+∆ = −  is constant. In each interval {i} a quadratic polynomial 

 { } ( ) ( )
3

1
,

1

k
ik is i

k

T p a p p
−

=
= −∑ , (1.6) 

is defined. The 3I coefficients aik of the I spline polynomials are obtained from the following 
conditions. Each of the I polynomials { } ( ),s iT p  intersects the node (i) 
 { } ( ) ( )s,s, i i iiT p T p= , 1, ... ,i I= . (1.7) 

In addition, the Ts values at the inner I-1 knots are equal for the adjacent polynomials 

 { } ( ) { } ( )K K
1 1s, s, 1i ii iT p T p+ ++= , 1, ... , 1i I= − . (1.8) 

The first derivatives with respect to p  at each of these knots are also equal 

 
{ }

( )
{ }

( )K Ks s
1 1

1

d d

d di i
i i

T T
p p

p p+ +
+

= , 1, ... , 1i I= − . (1.9) 

At the outer knots, these derivatives are calculated from the underlying function Ts(p) with 

 
{ }

( ) ( )K Ks s
1 1

1

d d

d di

T T
p p

p p=
=  and  

{ }
( ) ( )K Ks s

1 1
d d

d dI I
i I

T T
p p

p p+ +
=

= , (1.10, 1.11) 

where 

 s sd d d

d d d

T T p

p p p
= . 

The linear system of Eqs. (1.7 - 1.11) is solved in order to obtain the 3I spline coefficients aik. 
The resulting spline function and its first derivative is continuous over its full domain of 
definition. A more general description of the SBTL method is given in [1, 11, 12]. 



 
 
3.3 Calculation of inverse functions using the example of ps(T) 
 
The simulation of processes with small spatial and time discretization requires the inverse 
functions to be numerically consistent with their corresponding forward functions. The 
utilization of quadratic spline polynomials enables the fast calculation of numerically 
consistent inverse functions. For example, from the spline function for Ts(p) an inverse spline 
function for ps(T) can be obtained by solving Eq. (1.6) in terms of the transformed pressure p  
with 

 { } ( )
( )( )2

INV
s,s,

4

2

i i i i

ii
i

B B AC T
p T p

A

− ± −
= + ,  (1.12) 

where 
 3i iA a= , 

 2i iB a= , and 

 ( ) 1i iC T a T= − . 

For the monotonic function { } ( )s, iT p  in the interval {i}, the sign ( )±  in Eq. (1.12) equals 
sgn( )iB = + . In order to calculate ps(T) from Eq. (1.12), the corresponding interval {i}, where 
the given temperature T is located, must be determined. For this purpose, the auxiliary spline 
function ( )AUX

sp T  and Eq. (1.5) are used. Then, the inverse spline polynomial { } ( )INV
s, ip T , 

Eq. (1.12), is evaluated. The result must fulfil the condition described by Eq. (1.4); otherwise, 
the index i needs to be incremented or decremented and the calculation repeated. Eventually, 

sp  is converted to sp  with the inverse transformation function s s( )p p . A comprehensive 
description of the calculation of inverse functions from monotonic and non-monotonic spline 
functions is given in [1, 11, 12]. 
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Figure 3: Untransformed function Ts(p) with 
nodes equidistant in p , rather than in p. 

Figure 4: Transformed function ( )sT p  with 

nodes equidistant in p . 



3.4 Two-dimensional spline functions using the example of p(v,e) 
 
Analogously to the one-dimensional case discussed in Section 3.2, the generation of a two-
dimensional bi-quadratic spline function is illustrated using the example of p(v,e). Two 
separate spline functions for the liquid region L and the gas region G are prepared. Again, 
variable transformations are applied to reduce the change in curvature, i.e., to minimize the 
third derivatives that cannot be reproduced by bi-quadratic polynomials. For this purpose, 
both, the dependent and the independent variables can be transformed. Thus, the bi-quadratic 
spline polynomials can reproduce the transformed property function more accurately. In the 
gas phase, the changes in p are almost proportional to changes in e. Therefore, a 
transformation of e is not required. Depending on the desired range of validity, suitable 
variable transformations of v in the gas phase can be either 1v v−= , 4v v= , or ( )lnv v= . A 
transformation of the dependent variable p is also possible, but is not applied in this example. 
For some functions, a combination with the independent variables, e.g. p pv= , is useful to 
efficiently linearize the property function. Variable transformations can also be utilized to 
distribute the nodes in the desired range of validity more efficiently. Through the use of a so-
called scaling transformation, the irregularly shaped range of validity of the liquid region L, 
see Fig. 5, is mapped onto a rectangle, see Fig. 6. The linear scaling function reads 

 ( ) ( ) ( )( )max min
min min

max min
( , )

v v
v v e v v e v

v e v e

−= ⋅ − +
−

, (2.1) 

where min max( ) ( , )v e v p e=  and max liq_spin( ) ( )v e v e=
 are represented by quadratic spline 

functions and the free parameters are set to min 1v =  and max 100v = . 
 

  
 

maxe

mine

( ) ( )min max ,v e v p e=

( ) ( )max liq_spinv e v e=

Grid of nodes

Range of statee

v

maxe

mine

Range of statee

v
minv maxv

Grid of nodes

Figure 5: Grid of nodes in untransformed 
coordinates. 

Figure 6: Grid of nodes in transformed 
coordinates. 



Each spline function, pL(v,e) and pG(v,e), is created in transformed coordinates and 
interpolates values between a grid of IJ discrete nodes (see Fig. 7). The , ( , )i j i jp v e  values at 
the nodes are calculated from the underlying equation of state. The IJ spline polynomials are 
connected at knots, which are located in the middle between the nodes along v  and e. The 

K
iv  and K

je  values of the (I+1)(J+1) knots are 

 ( )K
1 1

1

2i i iv v v+ += + , 1, ... , 1i I= −  (2.2) 

 ( )K
1 1 2 1

1

2
v v v v= − − ,  ( )K

1 1
1

2I I I Iv v v v+ −= + − , (2.3, 2.4) 

 ( )K
1 1

1

2j j je e e+ += + , 1, ... , 1i J= −  (2.5) 

 ( )K
1 1 2 1

1

2
e e e e= − − , and  ( )K

1 1
1

2J J J Je e e e+ −= + − . (2.6, 2.7) 

The p positions of the knots result from the spline algorithm as explained below. A spline 
polynomial ranges over the cell {i,j} between 

 K K
1i iv v v+≤ <  and K K

1j je e e+≤ <  (2.8, 2.9) 

and intersects the node (i,j) at , ( , )i j i jp v e . 
 

  
 

The number of IJ nodes is chosen to ensure the required accuracy of the spline function over 
its full domain of definition. The nodes are distributed equidistantly along v  and e, so that a 
simple search algorithm can be used to determine the cell {i,j} in the grid of knots that fulfills 
the Eqs. (2.8) and (2.9) for a given pair of transformed variables ( , )v e . For equidistant nodes, 
and therefore equidistant knots, i and j can easily be calculated from 
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Figure 7: Grid of nodes and grid of knots with
cell {i,j}, where the spline polynomial 
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Figure 8: Location of points, where 
boundary conditions are defined at a 
cell. 



 
K

1
K

floor
v v

i
v

 −=   ∆ 
�  and (2.10) 

 
K
1

K
floor

e e
j

e

 −=   ∆ 
� . (2.11) 

The distribution of nodes and knots can also be manipulated by piecewise equidistant nodes, 
in ranges for which 1i iv v v+∆ = − , or 1j je e e+∆ = −  respectively, are constant. In each cell 
{ i,j} a bi-quadratic polynomial 

 { } ( ) ( ) ( )
3 3 11

,
1 1

,
lk

ijkl i ji j
k l

p v e a v v e e
−−

= =
= − −∑∑  (2.12) 

is defined. The 9IJ coefficients aijkl of the IJ spline polynomials are obtained from the 
conditions described in the following. Figure 8 illustrates the location of points, where 
boundary conditions are defined at a cell. Each of the IJ polynomials { } ( ), ,i jp v e  intersects 
the node (i,j) 

 { } ( ) ( ),, , ,i j i j i ji jp v e p v e=  1, ... ,i I= , 1, ... ,j J= . (2.13) 

The p values at the midpoints of the cell boundaries 
( )K ,i j

, 
( )K 1,i j+

, 
( )K,i j

, and ( )K, 1i j +
, marked with gray circles in Fig. 8, are equal to the corresponding values of the 

adjacent cells 

 { } ( ) { } ( )K K
1 1, 1,, ,i j i ji j i jp v e p v e+ ++=  1, ... , 1i I= − , 1, ... ,j J= , (2.14) 

 { } ( ) { } ( )K K
1 1, , 1, ,i j i ji j i jp v e p v e+ ++=  1, ... ,i I= , 1, ... , 1j J= − . (2.15) 

Furthermore, the derivatives 
( )e

p v∂ ∂
 at 

( )K ,i j
 and 

( )K 1,i j+
, as well as 

( )v
p e∂ ∂

 at ( )K,i j
 and 

( )K, 1i j +
, are equal to the corresponding derivatives of the adjacent cells 

 
{ }

( )
{ }

( )K K
1 1

, 1,

, ,i j i j
e ei j i j

p p
v e v e

v v+ +
+

∂ ∂   =   ∂ ∂   
 1, ... , 1i I= − , 1, ... ,j J= , (2.16) 

 
{ }

( )
{ }

( )K K
1 1

, , 1

, ,i j i j
v vi j i j

p p
v e v e

e e+ +
+

∂ ∂   =   ∂ ∂   
 1, ... ,i I= , 1, ... , 1j J= − . (2.17) 

In addition, the p values and the crossed derivatives ( )( )2 p v e∂ ∂ ∂  at the four knots at the 
corners ( )K K,i j , ( )K K, 1i j + , ( )K K1,i j+ , and ( )K K1, 1i j+ +  are equal to the 
corresponding values of the neighboring cells 
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At the outer boundaries of the grid of knots, the following values are provided from the 
underlying equation of state 
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The linear system of Eqs. (2.13 - 2.33) is solved in order to obtain the 9IJ spline coefficients 
aijkl. The resulting spline function and its first derivatives are continuous over its full domain 
of definition. A more general description of the SBTL method is given in [1, 11, 12]. 
 
3.5 Calculation of inverse functions using the example of e(p,v) 
 
Analogously to the one-dimensional inverse function discussed in Section 3.3, a numerically 
consistent inverse spline function for e(p,v) is obtained from the spline function for p(v,e). 
The bi-quadratic polynomial spline function given in Eq. (1.6) is solved in terms of the 
specific internal energy e with 

 { } ( )
( )( )2

INV
,

4
,

2

ij ij ij ij

ji j
ij

B B A C p
e p v e

A

− ± −
= + ,  (2.34) 

where 

 ( )13 23 33ij ij i ij ij iA a v a a v= + ∆ + ∆ , 



 ( )12 22 32ij ij i ij ij iB a v a a v= + ∆ + ∆ , and 

 ( ) ( )11 21 31ij ij i ij ij iC p a v a a v p= + ∆ + ∆ − . 

For monotonic functions { , } ( )i j vp e  in cell {i,j}, the sign ( )±  in Eq. (2.34) equals sgn( )ijB . In 
order to calculate e(p,v) from Eq. (2.34), the corresponding cell {i,j}, where the given state 
point (p,v) is located, must be determined. For this purpose, the auxiliary spline function 

AUX ( , )e p v  and Eqs. (2.10, 2.11) are used. Then, the inverse spline polynomial { } ( )INV
, ,i je p v , 

Eq. (2.34), is evaluated. The result must fulfil the condition described by Eq. (2.11), 
otherwise, the index j needs to be incremented or decremented and the calculation repeated. 
For the spline function p(v,e) for the liquid region L a scaling function, Eq. (2.1), with the 
dependent variable e of the inverse spline function e(p,v) is applied. In this case, an analytic 
solution for the inverse spline function cannot be provided. Fast iterative procedures to solve 
this problem are given in [12]. Due to the volume anomaly of water at low temperatures, the 
property function e(p,v) is non-monotonic in this range of state and two possible solutions 
must be distinguished as discussed in [1, 11, 12]. Inverse functions of input variables that are 
both neither v nor e, such as (p,h), (p,s), and (h,s) need to be calculated from the spline 
functions of (v,e) by iteration. For this purpose, fast algorithms for calculating the desired 
variables by iteration from a non-linear system of equations are used as described in [12]. 
Auxiliary spline functions have been generated to calculate the required initial values for v 
and e. 
 
3.6 SBTL functions for the single-phase region 
 
For each of the two single-phase regions, L and G, spline functions for the calculation of p, T, 
s, w, η, λ = f(v,e) have been generated. The specific enthalpy h and the specific Gibbs free 
energy g are calculated from h=e+pv and g=h-Ts. Since the computation of g(v,e) involves the 
evaluation of p(v,e), T(v,e), and s(v,e), additional spline functions are provided for even faster 
calculations of g(v,e). The isobaric and isochoric heat capacities are calculated from p(v,e) 
and T(v,e) according to their definitions 
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Since cp and cv contain the first derivatives of the bi-quadratic spline functions for p(v,e) and 
T(v,e), the first derivatives of cp and cv are discontinuous. In many process simulations, these 
derivatives are not required. For all other cases, additional spline functions for the calculation 
of cp(v,e) and cv(v,e) have been generated. 
The correlating equations for the dynamic viscosity η [14] and the thermal conductivity λ 
[15] contain critical enhancement terms to describe the behavior of these properties in the 
critical region. The critical enhancement terms depend on the derivative ( )Tv p∂ ∂ , which is 
infinite along the spinodals. This causes numerical difficulties and therefore, the critical 
enhancement terms were omitted for the generation of the η(v,e) and λ(v,e) spline functions. 
For the dynamic viscosity η the critical enhancement is only significant in a very small region 
around the critical point and the omission of the critical enhancement is recommended in [14] 



to simplify the calculation for industrial use. For the thermal conductivity λ, the critical 
enhancement is significant in a larger range around the critical point as discussed in [15]. 
 
Table 1: Dimensions of the grid of nodes of each (v,e) spline function for the liquid region L 
based on IAPWS-95 and the IAPWS releases on viscosity and thermal conductivity [14, 15] 
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Table 2: Dimensions of the grid of nodes of each (v,e) spline function for the gas region G 
based on IAPWS-95 and the IAPWS releases on viscosity and thermal conductivity [14, 15] 
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The grid dimensions of each (v,e) spline function are given in Tables 1 and 2. In the liquid 
region L, a scaling transformation for the specific volume v of the form ( ),v v e , Eq. (2.1), is 
applied. Thus, the shape of the grid of nodes corresponds to the shape of the liquid region L 
(see Figs. 1, 5, and 6). In the gas region G, the specific volume v is transformed as ln( )v v= . 
For piecewise equidistant nodes, the domain of the considered variable min maxv v v≤ ≤  or 

min maxe e e≤ ≤  is subdivided in several intervals with equidistant nodes. In the tables below, 
this is described with 
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where the boundaries of the intervals are given in the column on the left and the number of 
equidistant nodes between them is given in the column on the right. Nodes outside the range 
of validity are extrapolated appropriately. Inverse functions for calculations from (p,T), (p,v), 
(p,h), (p,s), and (h,s) have been implemented as described in Section 3.5. For each input 
variable combination, analytical derivatives are provided. 
 
3.7 Property calculations in the two-phase region 
 
The saturation states could be calculated from the Maxwell criterion, i.e., equal pressures and 
specific Gibbs free energies at constant temperature for both phases; but for the sake of 
simplicity, a spline function for Ts(p) is used instead. For property functions of (p,v), (p,h), 
and (p,s), the properties at saturation from can be calculated from the inverse functions, such 



as L,INV
s( , ( ))v v p T T p′ ==  and G,INV

s( , ( ))v v p T T p′′ == . In order to calculate the properties 
at saturation from (v,e), the following set of equations F(X), Eqs. (3.1 - 3.5), 

 ( ) L
1 s0 ( , )p v e p′ ′= = −F X , (3.1) 

( ) G
2 s0 ( , )p v e p′′ ′′= = −F X , (3.2) 

( ) L
3 s s0 ( , ) ( )T v e T p′ ′= = −F X , (3.3) 

( ) ( )G
4 s s0 ( , )T v e T p′′ ′′= = −F X , and (3.4) 

( )5 0
v v e e

v v e e

′ ′− −= = −
′′ ′ ′′ ′− −

F X  (3.5) 

is solved for the vector of unknowns ( )s
T

, , , ,p v v e e′ ′′ ′ ′′=X . This is done through the use of 
Newton’s method for non-linear systems of equations by solving 

 ( ) ( )k k k∆ =J X X F X  and (3.6) 

 1k k k+ = − ∆X X X  (3.7) 

in each iteration step k until convergence is reached. The Jacobian matrix J(X) is given 
analytically as shown in [1, 11, 12]. Initial values of the unknown variables are calculated 
from auxiliary spline functions for ( )s ,p v e  and for ( )v T′ , ( )v T′′ , ( )e T′ , and ( )e T′′ . The 
vapor mass fraction x is calculated from 
 ( ) / ( )x v v v v′ ′′ ′= − −  or ( ) / ( )x e e e e′ ′′ ′= − − . (3.8) 
Then, the other mass-averaged properties can be calculated from the properties at saturation, 
as for example the specific entropy s from L ( , )s z v e′ ′ ′= , G( , )s z v e′′ ′′ ′′= , and 
 ( ) ( ),s v e s x s s′ ′′ ′= + − . (3.9) 

Additionally, algorithms for calculating the properties in the two-phase region have been 
implemented for (p,x), (T,x), (p,v), (p,h), (p,s), and (h,s) inputs. For each input variable 
combination, analytical derivatives are provided. 
 
3.8 Deviations of the SBTL functions from IAPWS-95 
 
For the development of SBTL functions for the liquid region L and the gas region G, the 
permissible deviations from IAPWS-95 as well as from the IAPWS formulations for viscosity 
and thermal conductivity shown in Table 3 have been set. The SBTL functions represent the 
IAPWS formulations within these permissible deviations. The deviations in pressure p(v,e), 
temperature T(v,e), and specific entropy s(v,e) from IAPWS-95 in the liquid region L and the 
gas region G are depicted in Figs. 9, 10, and 11. 
 
  



Table 3: Permissible deviations for the development of SBTL functions from IAPWS-95 as 
well as the IAPWS formulations for viscosity and thermal conductivity [14, 15] 

 SBTL function Liquid region L Gas region G 

p(v,e)  
p ≤ 2.5 MPa |∆p/p| < 0.6 % 

|∆p/p| < 0.001 % 
p > 2.5 MPa |∆p| < 15 kPa 

T(v,e)  |∆T| < 1 mK |∆T| < 1 mK 

s(v,e)  |∆s| < 10-6 kJ/(kg K) |∆s| < 10-6 kJ/(kg K) 

w(v,e) |∆w/w| < 0.001 % |∆w/w| < 0.001 % 

η(v,e)a |∆η/η| < 0.001 % |∆η/η| < 0.001 % 

λ(v,e)a |∆λ/λ| < 0.001 % |∆λ/λ| < 0.001 % 
a The critical enhancement of dynamic viscosity and thermal conductivity has been omitted 

(see Section 3.6 for details.) 
 

 
Figure 9: Deviations in p(v,e) from IAPWS-95 in the liquid region L and the gas region G. 



 

 

 

 
3.9 Computing-times comparisons 
 
The calculation of property functions from IAPWS-95 is computationally intensive. 
Therefore, the computing times of the spline functions described in Sections 3.6 and 3.7 have 
been compared with those of the computationally more efficient IAPWS-IF97 formulation, 
which is used in many industrial applications. To illustrate the difference in computing speed 
between IAPWS-95 and IAPWS-IF97, the computing times of the spline functions for p(v,e) 
and T(v,e) have also been compared with IAPWS-95. 

Figure 10: Deviations in T(v,e) from IAPWS-95 in the liquid region L and the gas region G. 

Figure 11: Deviations in s(v,e) from IAPWS-95 in the liquid region L and the gas region G. 



The Computing-Time Ratio (CTR) is: 

Computing time of the calculation from IAPWS-IF97 (IAPWS-95)

Computing time of the calculation from the SBTL algorithms
CTR= . 

IAPWS-IF97 property functions were computed from the Extended IAPWS-IF97 Steam 
Tables software [16]. Since the region definitions of the SBTL functions are different from 
the regions of IAPWS-IF97, the computing times of both formulations include the 
determination of the region that corresponds to the given state point. The IAPWS-95 property 
functions were computed from the internal routines of REFPROP [17], where the phase 
(liquid or vapor) is known and no phase tests are performed. None of the implementations of 
IAPWS-IF97, IAPWS-95, or the SBTL method takes advantage of information from 
previously calculated state points. The computing times were measured by means of software 
similar to NIFBENCH [5] with 100,000 randomly distributed state points in the 
corresponding region. All algorithms have been compiled into single-threaded software with 
the Intel Composer 2011 with default options. The tests were carried out on a Windows 8 
computer equipped with an Intel Core i7-4500U CPU with 2.39 GHz and 8 GB RAM. The 
results of the computing-time comparisons are summarized in Table 4. 
 
Table 4: Computing-time ratios (CTR) of SBTL property functions in comparison to the 
iterative calculations from IAPWS-IF97 and from IAPWS-95 (in parentheses) 

 IAPWS-IF97 Region 

SBTL function 1 2 3 4 5 

p(v,e)  130 (243a) 271 (434a) 161 19.6 470 

T(v,e)  161 (251a) 250 (410a) 158 20.6 442 

s(v,e)  164 261 160 17.8 449 

e(p,v)  2.0 6.4 2.8 5.6 3.2 

T(p,h)a 2.9 (≈15 000) 4.7 (6760) 3.0 4.4 26.5 

v(p,h)a 3.8 (≈14 500) 6.1 (6900) 5.1 2.6 25.2 
a Calculated from explicit spline functions rather than from inverse spline functions. 
 
4 SBTL property functions for other fluids 
 
In order to apply the SBTL method to property functions for any fluid, the software 
FluidSplines [12, 18] has been developed. The underlying fluid properties are provided from 
external databases such as the property libraries from the Zittau/Görlitz University of Applied 
Sciences or REFPROP [17] from NIST. FluidSplines implements all the features of the SBTL 
method and assists the user in generating spline functions and inverse spline functions for a 
given range of validity with a user-specified agreement with the underlying property 
formulations. 
  



5 Application of the SBTL method in RELAP-7 
 
RELAP-7 (Reactor Excursion and Leak Analysis Program) [2] is the next generation nuclear 
reactor system safety analysis code currently being developed at Idaho National Laboratory 
(INL). The code is based on the INL’s scientific software development framework MOOSE 
(Multi-physics Object Oriented Simulation Environment) [19]. By using the MOOSE 
development framework, RELAP-7 can be tightly (implicitly) coupled to over 20 different 
MOOSE based applications ranging from 3-D transient neutron transport, to detailed 3-D 
transient fuel performance analysis, to long-term material aging, thus leveraging with 
capabilities developed through other programs. 
The primary basis of the RELAP-7 governing theory includes, at a system level, 
nonequilibrium two-phase flow, reactor core heat transfer, and reactor kinetics models. 
Because of the broad spectrum of phenomena occurring in light water nuclear reactor coolant 
flows (boiling, flashing, and bubble collapse, choking, blowdown, condensation, wave 
propagation, large density variations, etc.) it is imperative that models accurately describe 
compressible multiphase flows exhibiting metastable states, with multiple velocities, and that 
the models be well-posed (in the sense of Hadamard) and unconditionally hyperbolic. A 
detailed summary of model requirements may be found in [20]. It is known that van der 
Waals or cubic equations of state used with Euler or Navier-Stokes equations correspond to 
ill-posed mixture models because the square of the sound speed becomes negative in the 
spinodal zone. To avoid this difficulty we utilize a model in RELAP-7 that considers phase 
change as a kinetic transformation rather than as a thermodynamic one. In this model each 
phase retains its own pure substance equation of state. Thus, each phase has its own dynamics 
and thermodynamics (velocity, density, temperature, pressure, etc.), and the modeling of mass 
transfer is a relaxation towards equilibrium by the kinetic process. With such a kinetic 
representation, metastable states are present, the mixture sound speed is always well defined, 
and hyperbolicity is preserved during interphase mass transfer. Furthermore, when 
equilibrium is reached, the usual properties of the phase diagram, such as latent heat of 
vaporization and saturation temperature, are recovered. 
To meet this criterion, we have adopted the 7-equation model [20-24] for fully 
nonequilibrium, fully compressible, two-phase flows. This equation system meets our 
requirements, being both hyperbolic and well-posed, and it has an intuitively pleasing set of 
genuinely nonlinear and linear degenerate eigenvalues (wave speeds). This same 7-equation 
two-phase flow model is also being utilized to build the next generation 3-D high-resolution, 
multi-scale two-phase solver to seamlessly couple with the RELAP-7 systems analysis code. 
The one-dimensional form, with variable cross-section flow area, of the fully nonequilibrium, 
7-equation two-phase flow model used by RELAP-7 is described by the balance of mass, 
momentum, and total energy for each phase (liquid and vapor) plus a volume fraction 
evolution equation for each phase (except as noted below for two phases), respectively, as 
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vapor phase: 
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For two phases, Eq. (4.8) is conveniently replaced by the (algebraic) saturation constraint 
 1.l gα α+ =  (4.9) 

In the balance equations above, the interfacial variables are 
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with the mechanical relaxation coefficients given by 
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and the interphase mass transfer given by 
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where 
 ( )int sat intT T p=  (4.20) 

 ( ) ( ), , ,k int k sat inth h T k l g= = . (4.21) 

In the equations above, the notations are classical from the two-phase flow literature. 
If full mechanical relaxation (in which phasic pressures and velocities are relaxed to single 
values, see for example [25]) along with full thermodynamic relaxation (in which phasic 
temperatures and Gibbs energies are relaxed to single values) occurs, the 7-equation model 
above dynamically reduces to the 3-equation Homogeneous Equilibrium Model (HEM) 
model. Formally, the three governing balance equations of the HEM model are identical to the 
Euler equations; however, the density is an equilibrium volume fraction weighted mixture 
value, the specific internal energy is an equilibrium mass fraction weighted mixture value, the 
pressure and temperature are thermodynamic equilibrium values, and the velocity is the 
mixture barycentric value. Though the 3-equation HEM model is the simplest and oldest two-



phase model it has many limitations and some of its properties, e.g. effective sound speed, are 
more difficult to compute, and may even exhibit discontinuities in transitions from single- to 
two-phases. For applications where the HEM representation is physically appropriate, it is 
more economical to begin with the 3-equation model, rather than carry the additional expense 
of the relaxed 7-equation model. The 3-equation HEM model is included also as a selectable 
model in RELAP-7. 
For the accurate simulation of two-phase flows with RELAP-7 the equation systems must be 
closed (partially) with accurate thermodynamic equations of state to obtain the properties of 
steam and water. Moreover, for CPU-intensive numerical simulations with this code, 
thermodynamic and transport properties of steam and water are calculated extremely often. 
Examination of the governing partial differential equations of the 7-equation two-phase model 
shows that their dependent variables are mass-, momentum-, and total energy-densities. Thus 
the thermodynamics variables resulting from their solution are phasic specific volume and 
specific internal energy ( ),k kv e  
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or, in the case of the HEM two-phase model, the corresponding solution dependent variables 
are equilibrium mixture values ( ),v e . Determining properties as a function of ( ),k kv e  or 

( ),v e  from an accurate equation of state such as IAPWS-95 would normally require a 
functional inversion, because these are not the dependencies upon which it is constructed, 
based upon an iterative numerical solution that is very time-consuming and not 
computationally efficient. In addition, for initial condition specification and boundary 
condition calculations, other thermodynamic dependencies are needed, such as ( ),k k ke v p , 

( ),k k ke s p , ( ),k k kv s p , and ( ),k k kp h s . To provide fast and accurate property calculation 
algorithms, RELAP-7 was modified to employ the Spline-Based Table Look-up (SBTL) 
method based on IAPWS-95, as described above. Because each phase of the 7-equation two-
phase model treats only that phase, which can be in either the stable or metastable (i.e. in a 
state between the saturation line and the appropriate spinodal line) state, the IAPWS-95/SBTL 
package was modified to accommodate this need. For the HEM two-phase model the IAPWS-
95/SBTL package produces only equilibrium properties. The utilization of the SBTL method 
has enabled RELAP-7 to eliminate the approximate stiffened gas analytical equations of state 
and to complete the major hurdle of incorporating the numerically efficient calculation of 
accurate water and steam thermodynamic properties [2]. 
To fully close the 7-equation two-phase model, additional relations must be supplied which 
are very significantly dependent upon the flow topology (or flow regime) such as relationships 
between the fluid phases and the wall (friction ,wall kF , heat-transfer , ,wall k convQ , and mass-
transfer ,wall g±Γ ) and relationships describing the bulk interactions between the phases 
(interphase mass-transfer ,int g±Γ , momentum-transfer, and energy-transfer) which depend 
strongly upon the interfacial area concentration and distribution. Many of these flow 
topology-dependent closure correlations have been extensively investigated and partially 



validated in existing system analysis codes. Such closures are currently being implemented 
into RELAP-7 and are partially described in [2]. 
Because these complex flow topology-dependent closures are a work in progress, it will not 
be reported herein. However, a unique advantage of the 7-equation two-phase model is its 
ability to execute in a completely nonequilibrium manner, i.e. with absolutely no interaction 
between the phases other than sharing the same flow channel, which will effectively nullify 
the important physical effects due to flow topology [22]. For example, let us consider a two-
phase flow of water and its vapor through a converging-diverging nozzle with cosine variation 
of the cross-sectional area such that the inlet cross-section has the same area as that of the 
outlet, cosine- nozzle. If (1) the interphase heat and mass transfers are turned off, (2) the 
pressure and velocity relaxation coefficients are set also to zero, and (3) the initial volume 
fraction is spatially constant with (4) the inlet boundary volume fraction set to match this 
constant value for all times, then the two-phase flow solution of the 7-equation model should 
identically match that of two, single-phase flows (water and its vapor) each flowing through 
the same nozzle. We consider the symmetrical cosine-nozzle to be of length 1.0 meter, with 

0.33throat exitA A = , and being spatially discretized with 1000 continuous, linear finite 
elements. The nozzle problem is executed as a transient problem using second order backward 
difference (implicit) time integration and run to steady state at approximately 1.1 s. Both 
phases have the same inlet stagnation boundary condition specified at approximately the 
saturation condition, 6

0 1.0 10p Pa= ⋅  and 0 453T K= at 0.0x =  for all time. The inlet liquid 
volume fraction 0.5lα =  is specified at 0.0x =  for all time. The nozzle’s liquid volume 
fraction spatial distribution is specified as 0.5lα =  for 0.0 1.0x≤ ≤  at time 0.0t = . The 
nozzle’s remaining initial conditions are 61.0 10p Pa= ⋅ , 453T K= , and velocity 0.0v =  for 
0.0 1.0x≤ ≤  (stationary saturation condition) at time 0.0t = . The nozzle’s outlet boundary 
condition is specified static pressure for both phases of 60.5 10bp Pa= ⋅  at 1.0x =  for all 
time. Steady state solutions for this nonequilibrium problem are shown in Figures 12 and 13 
where it is seen that, because phase change and interphase heat transfer are not allowed and 
because phasic pressures and velocities are not allowed to equilibrate, both compressible 
phases must necessarily acquire states significantly into the metastable regions. A few 
observations are apparent. The vapor solution is the classical compressible solution with a 
standing shock wave in the diverging portion of the nozzle at approximately 0.82 meters. 
Examining the liquid phase pressure, the liquid solution might at first appear to be classical 
incompressible venturi flow. However, upon further examining the liquid phase density and 
temperature profiles it is revealed that the liquid phase solution indeed follows the classical 
compressible flow solution for fully subsonic flow (shock free). This is as it should rightly be, 
because RELAP-7 treats both the liquid and vapor phases as being compressible. For this low-
speed, lossless flow the computed static pressure at the inlet should exactly match the 
specified static pressure set for the outlet. 

 



 

 
Figure 12: Nozzle phasic thermodynamic property at steady state for completely 
nonequilibrium flow. 

 
Figure 13: Nozzle phasic velocity distribution at steady state for completely nonequilibrium 
flow. 
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6 Conclusions and outlook 
 
The new “IAPWS Guideline on the Fast Calculation of Steam and Water Properties with the 
Spline-Based Table Look-Up Method (SBTL)” has been applied to the scientific formulation 
for water and steam IAPWS-95 and the latest IAPWS formulations for viscosity and thermal 
conductivity. The newly generated SBTL functions include the metastable liquid and the 
metastable vapor regions and are applicable for pressures up to 100 MPa and temperatures up 
to 1273.15 K. Depending on the considered property and the range of state, the deviations of 
the SBTL functions from their underlying property formulations are 1-100 ppm. The property 
functions of specific volume and specific internal energy (v,e), as used in RELAP-7, are more 
than 400 times faster than the iterative calculation from IAPWS-95. Moreover, fast inverse 
functions of pressure and temperature (p,T), pressure and specific volume (p,v), pressure and 
specific enthalpy (p,h), pressure and specific entropy (p,s), and specific enthalpy and specific 
entropy (h,s) have been developed. The SBTL functions and their inverse functions are 
numerically consistent with each other and continuously differentiable once. 
The SBTL functions have been implemented into the nuclear reactor system safety analysis 
code RELAP-7 to consider the real fluid behavior of water and steam and to enable the 
utilization of a novel 7-equation two-phase flow model. Prior to the incorporation of the 
SBTL method in RELAP-7, a stiffened gas equation of state was used for each phase with 
appropriate modification to link the reference states [26]. This was useful for achievement of 
rapid development progress, but for use with real nuclear power plants, accurate water and 
steam properties are essential, not only for equilibrium properties but especially for the 
metastable properties required for the advanced 7-equation two-phase model of RELAP-7. 
The attainment of accurate properties in an efficient manner with the SBTL method 
constitutes a completion of a major hurtle in this regard. 
Projects are being planned to apply the SBTL method to other fluids, such as heavy water, 
helium, nitrogen, carbon dioxide etc., and to mixtures, such as humid air. 
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